General information

High performance vibration dampers are used in compliance with safety regulations on vibrations and noise (DL 81/2008). The use of this product range allows: to prevent damage to structures, to preserve the correct operation of sensitive equipment, to reduce noise.

Features

AVC:

- High static deflection, low resonance frequency and high vibration isolation.
- High damping, also suitable for unbalanced machines.
- Suitable for use with with compression, traction and shear.
- Suitable for applications where impacts and shocks may occur.
- Structure fully made out of stainless steel, resistant to flames, high temperatures and corrosion.

AVM:

- High static deflection depending on height, low resonance frequency and high vibration isolation
- No damping factor, therefore not suitable for unbalanced machines.
- Suitable for use with with compression.
- Stainless steel springs must be used for temperatures below -5°C (special execution on request).

AVF:

- Heavy loads with moderate overall dimensions.
- Characterised by non-linear stiffness: vibration isolation in the first section of the curve, in the next section the system is stabilised for any overloads.
- Structure fully made out of stainless steel, resistant to flames, high temperatures and corrosion.
- Suitable for use with with compression.

AVG:

- Good static deflection, low resonance frequency and good vibration isolation.
- High damping factor, also suitable for unbalanced machines.
- Suitable for use with with compression and traction.
- High safety degree: even in the case of the combustion of rubber resilient, the inner pin cannot come out of the structure and keeps the equipmnent securely suspended.

Guidelines for the choice

Analysis of the static tests to select the appropriate vibration damper.

Basic data required:

- The static load applied to each vibration damping element (acting on each support point).
- Disturbing frequency to be reduced and the desired isolation percentage.

How to choose the vibration-damping element:

- With reference to the diagram for the check of the degree of isolation, locate the corresponding static deflection required to obtain the desired isolation.
- Select the product with the required static deflection depending on acting load.

Example:

Consider an application with the following features:

- Static load on each support: 1400 N
- Frequency to be isolated: 1.200 rpm = 20 Hz
- Required isolation: 90% at 20 Hz

For vibration dampers without damping e.g. AVM, the following diagram for checking the isolation degree shows that a static deflection of at least 7 mm is required to obtain 90% isolation of the 20 Hz frequency, In case of damping, the isolation percentage may vary, it is advisable to contact the Elesa+Ganter Technical Department.

HIGH PERFORMANCE VIBRATION DAMPERS

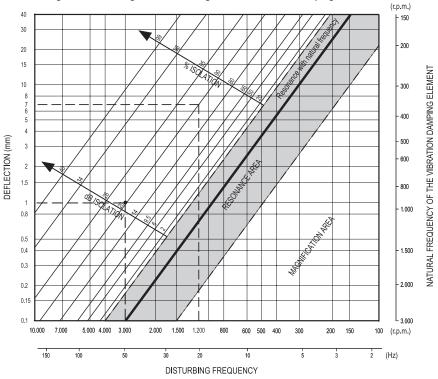
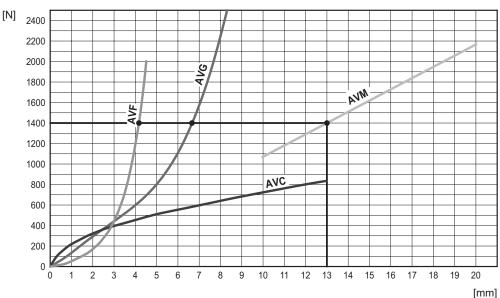
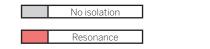



Diagram for checking the isolation degree of the vibration-damping element

With reference to the graph below the products that intersect the 1400 N line are: AVG, AVM. For the 1400 N load, the expected static deflections are:

- AVF: approximately 4 mm (< 7 mm) = approximately 80% isolation at 20 Hz
- AVG: 6.5 mm (< 7 mm) = approximately 88% isolation at 20 Hz
- AVM: 13 mm (< 7 mm) = approximately 95% isolation at 20 Hz

Consequently, the most suitable product with the best isolation degree is AVM.


Example of load diagrams

HIGH PERFORMANCE VIBRATION DAMPERS

Simplified diagram for the check of the degree of isolation of a vibration damper

Defl.	fOv								1								
[mm]	[Hz]	Isolation %															
1	15.9	-1%	-5%	-11%	-21%	-38%	-65%	-116%	-235%	-795%	-935%	-73%	32%	70%	89%	94%	96%
1.5	13.0	-2%	-7%	-17%	-36%	-70%	-145%	-416%	-1795%	-201%	-55%	27%	63%	82%	93%	96%	98%
2	11.3	-2%	-10%	-25%	-54%	-121%	-375%	-1239%	-148%	-29%	16%	54%	75%	87%	95%	97%	98%
2.5	10.1	-3%	-12%	-33%	-78%	-218%	-7569%	-191%	-33%	18%	43%	66%	81%	90%	96%	98%	99%
3	9.2	-3%	-15%	-42%	-111%	-463%	-442%	-63%	10%	40%	56%	73%	84%	92%	97%	98%	99%
4	8.0	-5%	-21%	-65%	-235%	-935%	-73%	13%	45%	61%	70%	81%	89%	94%	97%	99%	99%
5	7.1	-6%	-28%	-97%	-715%	-170%	-3%	41%	60%	71%	78%	85%	91%	95%	98%	99%	99%
6	6.5	-7%	-36%	-145%	-1795%	-55%	27%	55%	69%	77%	82%	88%	93%	96%	98%	99%	99%
7	6.0	-8%	-44%	-223%	-338%	-9%	43%	64%	74%	81%	85%	90%	94%	97%	99%	99%	99%
8	5.6	-10%	-54%	-375%	-148%	16%	54%	70%	78%	84%	87%	91%	95%	97%	99%	99%	Max
10	5.0	-12%	-78%	-7569%	-33%	43%	66%	77%	83%	87%	90%	93%	96%	98%	99%	99%	Max
12	4.6	-15%	-111%	-442%	10%	56%	73%	82%	87%	90%	92%	94%	97%	98%	99%	Max	Max
14	4.3	-18%	-159%	-162%	31%	65%	78%	85%	89%	91%	93%	95%	97%	98%	99%	Max	Max
16	4.0	-21%	-235%	-73%	45%	70%	81%	87%	90%	92%	94%	96%	97%	99%	99%	Max	Max
18	3.8	-25%	-375%	-29%	54%	75%	84%	88%	91%	93%	95%	96%	98%	99%	99%	Max	Max
20	3.6	-28%	-715%	-3%	60%	78%	85%	90%	92%	94%	95%	97%	98%	99%	99%	Max	Max
22	3.4	-32%	-2759%	15%	65%	80%	87%	91%	93%	95%	96%	97%	98%	99%	Max	Max	Max
25	3.2	-38%	-935%	32%	70%	83%	89%	92%	94%	95%	96%	97%	98%	99%	Max	Max	Max
30	2.9	-49%	-217%	49%	77%	86%	91%	93%	95%	96%	97%	98%	99%	99%	Max	Max	Max
32	2.8	-54%	-148%	54%	78%	87%	91%	94%	95%	96%	97%	98%	99%	99%	Max	Max	Max
35	2.7	-62%	-87%	59%	81%	88%	92%	94%	96%	97%	97%	98%	99%	99%	Max	Max	Max
40	2.5	-78%	-33%	66%	83%	90%	93%	95%	96%	97%	98%	98%	99%	99%	Max	Max	Max
45	2.4	-97%	-3%	71%	85%	91%	94%	96%	97%	97%	98%	99%	99%	99%	Max	Max	Max
50	2.3	-121%	16%	75%	87%	92%	95%	96%	97%	98%	98%	99%	99%	Max	Max	Max	Max
55	2.1	-152%	29%	77%	88%	93%	95%	96%	97%	98%	98%	99%	99%	Max	Max	Max	Max
60	2.1	-192%	39%	80%	90%	94%	96%	97%	98%	98%	98%	99%	99%	Max	Max	Max	Max
70	1.9	-330%	52%	83%	91%	95%	96%	97%	98%	98%	99%	99%	99%	Max	Max	Max	Max
80	1.8	-715%	60%	85%	92%	95%	97%	98%	98%	99%	99%	99%	99%	Max	Max	Max	Max
90	1.7	-7569%	66%	87%	93%	96%	97%	98%	98%	99%	99%	99%	Max	Max	Max	Max	Max
100	1.6	-935%	70%	89%	94%	96%	97%	98%	99%	99%	99%	99%	Max	Max	Max	Max	Max
150	1.3	-55%	82%	93%	96%	98%	98%	99%	99%	99%	99%	Max	Max	Max	Max	Max	Max
200	1.1	16%	87%	95%	97%	98%	99%	99%	99%	99%	Max	Max	Max	Max	Max	Max	Max
RP	RPM		200	300	400	500	600	700	800	900	1000	1200	1500	2000	3000	4000	5000
[H	z]	1.7	3.3	5.0	6.7	8.3	10.0	11.7	13.3	15.0	16.7	20.0	25.0	33.3	50.0	66.7	83.3

Minimum isolation
Modest isolation

Average isolation

High isolation

